
1

CS 410/510: Advanced
 Programming

Lecture 4: Lists, Tests, and Laws

Mark P Jones

Portland State University

2

Lists …

3

Why Study Lists?

! " Lists are a heavily used data structure in many
functional programs

! " Special syntax is provided to make programming
with lists more convenient

! " Lists are a special case / an example of:
!" An algebraic datatype

!" A parameterized datatype

!" A monad

4

What is a List?

! " An ordered collection (multiset) of values
!" [1,2,3,4], [4,3,2,1], [1,1,2,2,3,3,4,4] are distinct

lists of integers

! " A list of type [T] contains zero or more
elements of type T
!" [True, False] :: [Bool]

!" [1,2,3] :: [Integer]

!" ['a', 'b', 'c'] :: [Char]

!" [[],[1],[1,2],[1,2,3]] :: [[Integer]]

! " All elements have the same type:
!" [True, 2, 'c'] is not a valid list

5

Naming Convention:

We often use a simple naming convention:

! " If a typical value in a list is called x, then a

typical list of such values might be called xs
(i.e., the plural of x)

! " … and a list of lists of values called x might
be called xss

! " A simple convention, minimal clutter, and a
useful mnemonic

6

How do you Make a List?

! " The empty list, [], which has type [a] for
any (element) type a

! " Enumerations: [e1, e2, e3 , e4]

! " Arithmetic Sequences:
!" [elem1 .. elem3]

!" [elem1, elem2 .. elem3]

!" Only works for certain element types: integers,
booleans, characters, …

!" (omit last element to specify an “infinite list”)

7

… continued:

! " Using list comprehensions:
!" [2*x+1 | x <- [1,3,7,11]]

! " Using constructor functions:
!" [] and (:) (“nil” and “cons”)

! " Using prelude/library functions:
!" …

8

Prelude Functions:

(++) :: [a] -> [a] -> [a]

reverse :: [a] -> [a]

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

takeWhile :: (a -> Bool) -> [a] -> [a]

dropWhile :: (a -> Bool) -> [a] -> [a]

zip :: [a] -> [b] -> [(a,b)]

replicate :: Int -> a -> [a]

iterate :: (a -> a) -> a -> [a]

repeat :: a -> [a]

…

9

map:

! "map :: (a -> b) -> [a] -> [b]

! "map f xs produces a new list by applying
the function f to each element in the list xs

! "map (1+) [1,2,3] = [2,3,4]

! "map even [1,2,3] = [False, True, False]

! "map id xs = xs, for any list xs

! "We can also think of map as a function that
turns functions of type (a -> b) into list
transformers of type ([a] -> [b])

10

filter:

! " filter :: (a -> Bool) -> [a] -> [a]

! " filter even [1..10] = [2,4,6,8,10]

! " filter (<5) [1..100] = [1,2,3,4]

! " filter (<5) [100,99..1] = [4,3,2,1]

! "We can think of filter as mapping
predicates/functions of type (a -> Bool), to
list transformers of type [a] -> [a]

11

… Tests …

12

Testing:

! " Testing can confirm expectations about how
things work

! " Conversely, testing can set expectations about

how things should work

! " It can be dangerous to generalize from tests

“Testing can be used to show the presence of bugs, but
never to show their absence” [Edsger Dijkstra, 1969]

! " But testing does help us to find & avoid:

!" Bugs in the things we build

!" Bugs in the claims we make about those things

13

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

14

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = test1 && test2 && test3

15

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = and [test1, test2, test3]

16

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = and [test1, test2, test3]

and :: [Bool] -> Bool

and [] = True

and (b:bs) = b && and bs

17

Issues:

! "Want to see results for all tests

! " Text to identify individual tests (especially
useful when a test fails)

! " Summary statistics

! " Handle more complex behavior (e.g.,
testing code that performs I/O actions)

! " Support tests for code that is supposed to
fail (e.g., raise an exception)

18

Enter HUnit:

! " A library for unit testing

! "Written in Haskell

! " Available from http://hunit.sourceforge.net

! " (Or from http://hackage.haskell.org)

! " Built-in to recent versions of Hugs and GHC

! " Just “import Test.HUnit” and you’re ready!

19

Defining Tests:

import Test.HUnit

test1 = TestCase (assertEqual

 “filter even [1..10]”

 (filter even [1..10])

 [2,4,6,8,10])

test2 = …

test3 = …

tests = TestList [test1, test2, test3]

20

Running Tests:

Main> runTestTT tests

Cases: 3 Tried: 3 Errors: 0 Failures: 0

Main>

21

Detecting Faults:

import Test.HUnit

test1 = TestCase (assertEqual

 “filter even [1..10]”

 (filter even [1..10])

 [2,4,6,9,10])

test2 = …

test3 = …

tests = TestList [test1, test2, test3]

22

Using HUnit:

Main> runTestTT tests

Failure in: 0

filter even [1..10]

expected: [2,4,6,8,10]

 but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

23

Labeling Tests:

…

tests = TestLabel “filter tests”

 $ TestList [test1, test2, test3]

24

Using HUnit:

Main> runTestTT tests

Failure in: filter tests:0

filter even [1..10]

expected: [2,4,6,8,10]

 but got: [2,4,6,9,10]

Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

25

The Test and Assertion Types:

data Test = TestCase Assertion

 | TestList [Test]

 | TestLabel String Test

runTestTT :: Test -> IO Counts

assertFailure :: String -> Assertion

assertBool :: String -> Bool -> Assertion

assertEqual :: (Eq a, Show a) =>
 String -> a -> a -> Assertion

26

Problems:

! " Finding and running tests is a manual
process (easily skipped/overlooked)

! " Can be hard to trim tests from distributed
code

! " Can’t solve the halting problem "

27

Example: merge

Let’s develop a merge function for combining
two sorted lists into a single sorted list:

merge :: [Int] -> [Int] -> [Int]

merge = undefined

What about test cases?

28

Merge Tests:

! " Simple examples:
merge [1,5,9] [2,3,6,10] == [1,2,3,5,6,9,10]

! " One or both arguments empty:
merge [] [1,2,3] == [1,2,3]

merge [1,2,3] [] == [1,2,3]

! " Duplicate elements:
merge [2] [1,2,3] == [1,2,3]

merge [1,2,3] [2] == [1,2,3]

29

Capturing the Tests:

mergeTests

 = TestLabel "merge tests”

 $ TestList [simpleTests, emptyTests, dupTests]

simpleTests

 = TestLabel "simple tests”

 $ TestCase (assertEqual "merge [1,5,9] [2,3,6,10]"

 (merge [1,5,9] [2,3,6,10])

 [1,2,3,5,6,9,10])

emptyTests

 = …

30

Capturing the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 0 Errors: 0 Failures: 0

Program error: Prelude.undefined

Main>

31

Refining the Definition (1):

Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]

merge xs ys = []

What happens to the test cases now?

32

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:0:simple tests

merge [1,5,9] [2,3,6,10]

expected: []

 but got: [1,2,3,5,6,9,10]

…

Cases: 6 Tried: 6 Errors: 0 Failures: 5

Main>

33

Refining the Definition (2):

Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]

merge xs ys = xs

What happens to the test cases now?

34

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:0:simple tests

merge [1,5,9] [2,3,6,10]

expected: [1,5,9]

 but got: [1,2,3,5,6,9,10]

Failure in: merge tests:2:duplicate elements:0

merge [2] [1,2,3]

expected: [2]

 but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

35

Refining the Definition (3):

Use type information to break the definition
down into multiple cases:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) ys = ys

36

Refining the Definition (4):

Repeat …

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

 = x:xs

37

Refining the Definition (5):

Use guards to split into cases:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

 | x<y = x : merge xs (y:ys)

 | otherwise = y : merge (x:xs) ys

38

Back to the Tests:

Main> runTestTT mergeTests

Failure in: merge tests:2:duplicate elements:0

merge [2] [1,2,3]

expected: [1,2,2,3]

 but got: [1,2,3]

Failure in: merge tests:2:duplicate elements:1

merge [1,2,3] [2]

expected: [1,2,2,3]

 but got: [1,2,3]

Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

39

Refining the Definition (6):

Use another guards to add another case:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge (x:xs) [] = x:xs

merge (x:xs) (y:ys)

 | x<y = x : merge xs (y:ys)

 | y<x = y : merge (x:xs) ys

 | x==y = x : merge xs ys

40

Back to the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

41

Modifying the Definition:

Suppose we decide to modify the definition:

merge :: [Int] -> [Int] -> [Int]

merge (x:xs) (y:ys)

 | x<y = x : merge xs (y:ys)

 | y<x = y : merge (x:xs) ys

 | x==y = x : merge xs ys

merge xs ys = xs ++ ys

Is this still a valid definition?

42

Back to the Tests:

Main> runTestTT mergeTests

Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

43

Lessons Learned:

! " Writing tests (even before we’ve written the code
we want to test) can expose key details / design
decisions

! " A library like HUnit can help to (partially)
automate the process

! " Development alternates between coding and
testing

! " Bugs are expensive, running tests is cheap

! " Good tests can last a long time; continuing use as
code evolves

44

… and Laws

45

Lawful Programming:

! " Informal description:
 “map applies its first argument to every element in its
second argument …”

! " Type signature:
 map :: (a -> b) -> [a] -> [b]

! " Laws:
!" Normally in the form of equalities between expressions …

How can we give useful information about a
function without necessarily having to give all
the details of its definition?

46

Algebra of Lists:

! " (++) is associative with unit []
 xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

 [] ++ xs = xs = xs ++ []

! "map preserves identities, distributes
over composition and concatenation:
 map id = id

 map (f . g) = map f . map g

 map f (xs ++ ys) = map f xs ++ map f ys

47

… continued:

! " filter distributes over concatenation
filter p (xs ++ ys) = filter p xs ++ filter p ys

! " Filters and maps:
filter p . map f = map f . filter (p . f)

! " Composing filters:
filter p . filter q = filter r

 where r x = q x && p x

48

Aside: Lambda Notation

! " The syntax \vars -> expr denotes a
function that takes arguments vars and
returns the corresponding value of expr

! " Referred to as a lambda expression after
the corresponding construct in !-calculus

! " Examples:
!" (\x -> x + 1)

!" filter p . filter q = filter (\x -> q x && p x)

!" (\x -> 1 + 2*x)

!" (\x y -> (x + y) * (x - y))

49

Laws Describe Interactions:

! " A lot of laws describe how one operator
interacts with another

! " Example: interactions with reverse:
!" reverse . map f = map f . reverse

!" reverse . filter p = filter p . reverse

!" reverse (xs ++ ys) = reverse ys ++ reverse xs

!" reverse . reverse = reverse

! " Caution: stating a law doesn’t make it true!
(e.g., the last two laws for reverse …)

50

Uses for Laws:

Laws can be used:

! " To capture/document deep intuitions about
program behavior

! " To support reasoning about program
behavior

! " To optimize or transform programs (either
by hand, or in a compiler)

! " As properties to be tested

! " As properties to be proved

51

Laws for Merge:

What laws might we formulate for merge?

!" If xs and ys are sorted, then merge xs ys is sorted

!" merge (sort xs) (sort ys) should be sorted

!" merge xs ys == merge ys xs

!" merge xs (merge ys zs) == merge (merge xs ys) zs

!" merge [] ys == ys and merge xs [] == xs

!" merge xs xs == xs

!" length (merge xs ys) <= length xs + length ys

!" xs is a subset/subsequence of merge xs ys

52

From Laws to Functions:

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

 sorted ys ==>

 sorted (merge xs ys)

(==>) :: Bool -> Bool -> Bool

x ==> y = not x || y

sorted :: [Int] -> Bool

sorted xs = and [x <= y | (x,y) <- zip xs (tail xs)]

53

Testing mergeProp1:

Main> mergeProp1 [1,4,7] [2,4,6]

True

Main> mergeProp1 [1,4,7] [2,4,1]

True

Main> sorted [1,4,7]

True

Main> sorted [2,4,1]

False

Main>
Question: to test , I wrote more code …

If I don’t trust my programming skills, why am I
writing even more (untrustworthy) code?

54

Formulate More Tests!

import List(sort)

sortSorts :: [Int] -> Bool

sortSorts xs = sorted (sort xs)

sortedEmpty :: Bool

sortedEmpty = sorted []

sortIdempotent :: [Int] -> Bool

sortIdempotent xs = sort (sort xs) == sort xs

55

More Laws to Functions:

mergePreservesOrder :: [Int] -> [Int] -> Bool

mergePreservesOrder xs ys

 = sorted (merge (sort xs) (sort ys))

mergeCommutes :: [Int] -> [Int] -> Bool

mergeCommutes xs ys

 = merge us vs == merge vs us

 where us = sort xs

 vs = sort ys

etc...

56

Testing mergeProp1:

Main> mergeCommutes [1,4,7] [2,4,6]

True

Main> mergeCommutes [1,4,7] [2,4,1]

True

Main> mergePreservesOrder [1,4,7] [2,4,6]

True

Main> mergePreservesOrder [1,4,7] [2,4,1]

True

Main>

57

Automated Testing:

! " Of course, we can run as many individual
test cases as we like:
!" Pick a test case

!" Execute the program

!" Compare actual result with expected result

! "Wouldn’t it be nice if the environment could
help us to go directly from properties to
tests?

! "Wouldn’t it be nice if the environment could
run the tests for us automatically too?

58

QuickCheck:

! " This is a job for QuickCheck!

! " “QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs” by
Koen Claessen and John Hughes, Chalmers
University, Sweden. (Published at ICFP
2000)

! " In Hugs: import Test.QuickCheck

59

Understand Before you Code:

! "Haskell programmers write types first …
!" … type checking might find bugs.

! "Extreme programmers write tests first …
!" … running the tests might find bugs.

! "Very few programmers write laws first …
!" … because nothing encourages or rewards

them for writing laws.

60

Wanted! Reward!

! "In the short-term, programmers won’t
see any reward for writing laws …

! "… so they won’t write them.

! "If programmers can derive some
benefit from writing laws, then perhaps
they will do it …

61

Lawful Programming:

reverse :: [a] -> [a]

reverse xs = …

{- reverse satisfies the following:

 reverse (xs ++ ys)

 ==

 reverse ys ++ reverse xs

-}

62

Lawful Programming:

reverse :: [a] -> [a]

reverse xs = …

prop_RevApp xs ys

 = reverse (xs++ys)

 ==

 reverse ys ++ reverse xs

63

Running QuickCheck:

Prelude> :load reverse.hs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 OK, passed 100 tests

Main>

Main> reverse [1,2,3]

[3,2,1]

Main> quickCheck prop_RevApp

64

Not All Laws are True:

Main> quickCheck (\b -> b == not b)

Falsifiable, after 0 tests:

True

Main>

! "Sometimes this points to a bug in the
program.

! "Sometimes this points to a bug in the law.

65

Type-Checked Laws:

! " Laws are type checked as part of the main
program source text.

 prop_RevApp :: [Int] -> [Int] -> Bool

! "If the laws and the code are inconsistent, then
an error will be detected!

66

quickCheck :: Testable a => a -> IO a

instance Testable Bool where …

instance (Arbitrary a,

 Show a,

 Testable b)=> Testable (a -> b)

 where …

Indicates an ability to generate
arbitrary values of type a.

The Testable Class:

67

quickCheck :: Testable a => a -> IO a

instance Testable Bool where …

instance (Arbitrary a,

 Show a,

 Testable b)=> Testable (a -> b)

 where …

Indicates an ability to display
arguments for counter examples

The Testable Class:

68

Generating Arbitrary Values:

class Arbitrary a where

 arbitrary :: Gen a

instance Arbitrary ()

instance Arbitrary Bool

instance Arbitrary Int

instance Arbitrary Integer

instance Arbitrary Float

instance Arbitrary Double

instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b)

instance Arbitrary a => Arbitrary [a]

arbitrary is a
generator of random

values

69

Main> quickCheck prop_revApp

OK, passed 100 tests.

Main> quickCheck (prop_revApp [1,2,3])

OK, passed 100 tests.

Main>

If you don’t give a specific value for an
argument, quickCheck will generate
arbitrary (i.e. random) values for you.

Quantified or Parameterized?

70

QuickCheck-ing merge:

Main> quickCheck mergeCommutes

OK, passed 100 tests.

Main> quickCheck mergePreservesOrder

OK, passed 100 tests.

Main>

So far, so good …

71

Continued …

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

 sorted ys ==>

 sorted (merge xs ys)

What happens?

Main> quickCheck mergeProp1

Falsifiable, after 7 tests:

[-1,-5,5,4,3,-5]

[5,-6,2,6,-6,0]

Main>

Huh?

72

What went wrong?

Main> sorted [-1,-5,5,4,3,-5]

False

Main> sorted [5,-6,2,6,-6,0]

False

Main> sorted (merge [-1,-5,5,4,3,-5] [5,-6,2,6,-6,0])

False

Main> False ===> False ===> False

False

Main> False ===> (False ===> False)

True

Main>

73

A Fix! (in fact, infix)

infixr ==>

(==>) :: Bool -> Bool -> Bool

x ==> y = not x || y

What happens?

Main> quickCheck mergeProp1

OK, passed 100 tests.

Main>

Hooray!!!

74

Are we Happy Now?

mergeProp1 :: [Int] -> [Int] -> Bool

mergeProp1 xs ys = sorted xs ==>

 sorted ys ==>

 sorted (merge xs ys)

100 tests passed!

But how many of them were trivial (i.e., one or both
arguments unsorted)?

75

Understanding Test Results:

! " Use the collect combinator:
mergeProp1sorted xs ys

 = collect (sorted xs, sorted ys) (mergeProp1 xs ys)

! " Testing:
Main> quickCheck mergeProp1sorted

OK, passed 100 tests.

45% (False,False).

25% (True,True).

20% (True,False).

10% (False,True).

Main>

76

Understanding Test Results:

! " Or use the classify combinator:
mergeProp1long xs ys

 = classify (length xs > 10) "long"

 $ classify (length xs <= 5) "short"

 $ mergeProp1 xs ys

! " Testing:
Main> quickCheck mergeProp1long

OK, passed 100 tests.

49% short.

29% long.

Main>

77

Understanding ==>:

! " The real (==>) operator is not a standard
“implies” function of type Bool -> Bool -> Bool

! " When we test a property p ==> q, QuickCheck
will try to find 100 test cases for which p is true,
and will test q in each of those 100 cases

! " If it tries 1000 candidates without finding enough
solutions, then it will give up:
Main> quickCheck (\b -> (b == not b) ==> b)

Arguments exhausted after 0 tests.

Main>

! " QuickCheck can be configured to use different
numbers of tests/attempts

78

Writing Custom Generators:

Instead of generating random values and
selecting only some, we can try to generate
the ones we want directly:

sortedList :: Gen [Int]

sortedList = do ns <- arbitrary

 return (sort ns)

79

More Examples:

Now we can use QuickCheck’s forAll combinator to define:

prop_mergePreservesOrder = forAll sortedList $ \xs ->

 forAll sortedList $ \ys ->

 sorted (merge xs ys)

prop_mergeCommutes = forAll sortedList $ \xs ->

 forAll sortedList $ \ys ->

 merge xs ys == merge ys xs

prop_mergeIdempotent = forAll sortedList $ \xs ->

 merge xs xs == xs

80

Lessons Learned:

! "QuickCheck is a useful and lightweight tool that
encourages and rewards the lawful programmer!

! "There is a script that automatically runs
quickCheck on all of the properties in a file that
have names of the form prop_XXX

! "Interpreting test results may require some care …

! "“Good” (random) test data can be hard to find …

